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We show that it is possible to construct macroscopic entities that entail a quantum 
logical structure. We do this by means of the introduction of a simple macroscopic 
entity and study its structure in terms of lattices and graphs, and show that the 
lattice is non-Boolean. 

1. INTRODUCTION 

The principal idea that we want to put forward in this paper is the 
following: some of the most characteristic properties of quantum entities 
can be found as properties of ordinary mechanistic macroscopic entities as 
well. Two groups of  researchers (D. Aerts, T. Durt, and B. Van Bogaert in 
Brussels, and A. A. Grib and R. R. Zapatrin in St. Petersburg) have been 
investigating this idea, and have approached it from different directions. In 
this joint paper we investigate the connection between the results of the two 
groups. 

The mechanistic macroscopic entity that we will present in this section 
has been presented in Aerts (1985, 1986, 1987) with the aim of giving a 
possible explanation for the nonclassical character of  the quantum probabil- 
ity model. In this earlier work it is shown that a lack of knowledge about 
the change that the experiments exert on the physical system gives rise to a 
nonclassical probability model, isomorphic to a quantum probability model. 
But an explicit construction of  the lattice of properties of the example has 
not yet been made. 

Although quantum logic was derived from the study of the lattices 
of properties of quantum entities, few of the different approaches make it 
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possible to construct explicitly the lattice of properties for a concrete physical 
situation of  a physical entity and experiments on this physical entity. Some 
approaches do make this kind of  construction possible, and it is one of 
these physically founded approaches, namely the Geneva approach (Piron, 
1976, 1990; Aerts, 1981, 1982), that we will use to construct explicitly the 
lattice of properties connected to our physical example. Other approaches, 
more of a mathematical nature, give mathematical algorithms to construct 
the lattice. If an orthogonality relation is defined on the set of  states, the 
lattice can be constructed by the procedure of the "biorthogonal" (Birkhoff, 
1967; Zapatrin, 1988; Finkelstein and Finkelstein, 1983). We will investigate 
this construction on our concrete physical situation. Let us introduce the 
example. 

2. DESCRIPTION OF T I l E  MACROSCOPIC ENTITY 

We will give a detailed description of the macroscopic entity and the 
set of experiments that we consider on the entity. 

The physical entity S that we consider is a particle with fixed negative 
charge q such that it can be located on a sphere of  radius r at a point v = 
(r, 0, ~b). With every vector v of  the three-dimensional vector space of space 
directions with origin at the center of the sphere, there corresponds a state 
p~ of the entity. 

The experiment e~ consists of the following operation : we choose two 
particles with positive charges qj and q2 such that ql + q2 = Q. The charge qj 
is chosen at random in the interval [0, Q]. This choice represents the lack of 
knowledge about the experimental situation. Once the charges q~ and q2 are 
chosen we put the two particles diametrically on the sphere, such that q~ is 
at the point u = (r, a , /3) and q2 is at the point - u  = (r, ~ - a, tr +/3). This is the 
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setup of the experiment e., the entity being in statepv. Under the influence of 
the Coulomb forces/71 (between q and ql) and F2 (between q and q2) (Figure 
1), the charge q will move, and we suppose that this happens in a viscous 
medium such that finally, by means of friction, the charge q will end up a t  
ql or q2. If it ends up at ql (q2) we give the outcome 1. (2u) for the experiment 
e., which changes the state po into one of the states p.  or p_.  (Figure 2). 

3. QUANTUM LOGICAL STRUCTURE 

Let us investigate the quantum logical structure of this situation. We 
consider two specific points v and u of the sphere and their diametrically 
opposed points - v  and -u .  With these points correspond four possible 
states, p~, p_~, Pu, and p-u, and two possible experiments, e~ and eu. The 
state p.  (P-v) is an "eigenstate" of the experiment e. with "eigenoutcome" 
1. (2u) [by which we mean that if the entity is in statep~ (p_.), the experiment 
e. gives outcome 1~ (2u) with probability equal to 1]. Indeed, state p.  is the 
only state in which the experiment e. never can give the outcome 2.. Even 
if ql is uncharged, and the total charge is concentrated in q2, the CoulOmb 
force between q2 and q is on the radius of the sphere, and hence q is in an 
"unstable" equilibrium with regard to this Coulomb force, and will not be 
moved by it. The state p~ (p_~) is an "eigenstate" of the experiment ev with 
"eigenoutcome" 1~ (2o). 

If  the entity is in state p.  (pv) and the experiment eo (e.) is performed, 
then the two outcomes 1 v (1 u) and 2~ (2.) can occur. Indeed, since the amount 
of charge that finally is absorbed by particle ql or particle q2 of experiment 
e. is not determined (this is exactly the lack of knowledge about the complete 
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reality of  the situation), even if v is close in space to u, the experiment e. 
can have an outcome 2., and the state p~ will then be changed to P-u. I f  the 
entity is in state p_~ (p.)  and the experiment e. (e~) is performed, then also 
the two outcomes 1. and 2. (1~ and 2v) can occur. The states pv (P.) and p_~ 
(p_.)  are orthogonal states. 

The specification of this dynamics of  measurements and changes of 
states makes it possible to draw the graph in Figure 3 (Finkelstein and 
Finkelstein, 1983; Grib and Zapatrin,  1990), which describes different situ- 
ations, not only corresponding to Figures 1 and 2. Two points of  the graph, 
representing two states, are connected by a vertex if there exists an experi- 
ment that transforms one state into the other one. We can see that in our 
example orthogonal states are not connected by a vertex. 

3.1. Direct Construction of the Lattice of Properties 

As we mentioned, we shall now use the Geneva approach to construct 
explicitly the lattice of  properties connected to the example, and we shall see 
that this construction naturally leads to a non-Boolean lattice. We introduce 
the necessary concepts, and then immediately make the construction for our 
example. 

1. Introduction o f  the concept o f  property. A property a, as introduced 
in Piron (1976), of  an entity S must be testable. Such a test (sometimes also 
called a question or yes-no experiment) a of  a property a consists of  an 
experiment e that can be performed on S. I f  the experiment e gives us an 
expected outcome (one of  the outcomes that we have considered to charac- 
terize the property),  we say that the test a has succeeded, and attribute the 
answer yes to it. I f  the experiment e gives us other than one of  the expected 
outcomes, we say that the test a has failed, and attribute the answer no to 
it. I f  a is a test for the entity S, we can consider the test that consists of  
performing the same experiment, but interchanging the role of  yes and no. 
Let us denote this new test by 67 and call it the inverse test of  a. 

Each experiment e~ of our example has two possible outcomes, lv and 
2v. Clearly we can then make only two nontrivial tests by means of such an 
experiment: the test av, which is the test where the expected outcome is the 
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outcome lv, and the test c7~, which is the test where the expected outcome 
is the outcome 2~. Let us denote by av the property tested by a , ,  and by 
a" the property tested by cTv. 

2. The actuality o f  a property. A test a is said to be true, and the 
corresponding property a to be actual for the entity S, iff when we decide to 
perform the experiment corresponding to a, the answer yes comes out with 
certainty. Let us denote the collection of all properties of the entity S by Y.  

The test av is true and the corresponding property a~ actual iff the entity 
is in state p~, hence iff the charge q is in the direction v. Hence the property 
av can be expressed by the "proposit ion":  "The charge q is in direction v." 
The test 6v is true and the corresponding property a" actual iff the entity is 
in state p-v,  hence iff the charge q is in the direction - v .  Hence the property 
aLv can be expressed by the "proposit ion":  "The charge q is in direction 
- v . "  Here we are already confronted with the typical quantum mechanical 
situation, having led to so many mystifications, that the proposition used to 
express the property ao is not the "negation" of the proposition used to 
express the property a ' .  But by means of the example we can see that there 
is no real mystery involved in such a situation. 

3. A physical law on the collection s of  properties. For two tests a and 
/3 on the entity S, we say that a is stronger than/3 and we write a </3 iff, 
whenever the entity is in a state p such that a is true, then in this state p 
also/3 is true. Clearly the defined relation is a pre-order on the set of tests 
corresponding to the entity: (3.1) a < a ; (3.2) if a </3 and/3 < 7, then a < 7 
for any tests a,/3,  7 of  the entity S. 

If a and/3 are tests of  the entity S such that a </3 and/3 < a, then we 
say that a and/3 are equivalent tests (and indeed we have defined here an 
equivalence relation). Physically when a and/3 are equivalent they test the 
same property of the entity S. Therefore we shall represent mathematically 
a property a of the entity S by means of the equivalence class of tests that 
test this property. Then the property a is actual for S iff there is a test a ca  
that is true for S. The collection of properties ~ is then equipped with a 
partial order relation induced by the pre-order on the set of tests: For  two 
properties a and b we say that a<_b iff for any tests a ca  and/3~b we have 
a <_/3. Clearly: (3.3) a<_a; (3.4) if a<_b and b<_c, then a<_c; (3.5) if a<_b 
and b < a, then a = b; which shows that _< is a partial order relation on ~ .  

Let us investigate what becomes of  this law on the collection of  proper- 
ties 5(' of  our example. The physical law av<_a, is only fulfilled if v=u.  
Hence av__<au implies that u = v. We further have that a" = a_o. 

4. The complete lattice o f  properties. If  {ak} is a collection of  properties, 
and for every k, ak is a test for property ak, then we can introduce the 
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following new test zkak  that we will call the "product"  of  the tests ak: "We 
choose one of the a~ and perform the experiment corresponding to this test 
ak, then we accord to zka~ the answer obtained in this way." Clearly n~ak 
is true iff ak is true for every k. Let us denote the property defined by zrka~ 

b y / ~  a~, where ak is the property defined by ak. Then : (3.6)/~k ak is actual 

iff a~ is actual for every k. This shows that /~k ak is the infimum of  the 
collection of properties {ak} for the partial order relation < on 5~. The 
collection of  all tests that are never true will be denoted by 0. For  an arbitrary 
test a we have a .  ~ 0 .  We can define the following trivial test v; we do 
anything with the entity and give the answer yes. Clearly v is always true. 
The property defined by ~- will be denoted b y / .  For any property a we have 
0 < a < I. The collection of all properties 5r of  the entity S is then a partial 
ordered set, with a minimal element 0 and a maximal e lement / ,  and such 
that for any subcollection of  properties the infimum of  this subcollection is 
also an element of  ~ [see (3.6)]. Then ~ is a complete lattice [see Theorem 
2.1 of  Piron (1976)], the supremum for a collection of  properties {ak~ being 
defined by: (3.7) ~/~ ak = A b such that ak<b.  

Let us again investigate this complete lattice structure in the case of  our 
example. We can easily see that a~ �9 av is never " t rue" if u is different from 
v. Indeed there is no state of our entity that makes it possible to have an 
outcome "yes" with certainty for av and for a ,  if u is different from v. Hence 
at," ao~0 for u different from v. This shows that a, Aav=O for u different 
from v. This corresponds very well with the meaning of the propositional 
"and"  because, indeed, the positive charge q is never in directions u and v 
when they are different. Since a~<_av implies that u = v ,  it follows that 
a, r a y  = I if u is different f rom v. We now have all the elements of  the lattice 

= {0, a~,, I},  and we represent it in the diagram of  Figure 4. 

I 

/ 

0 
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5. Orthogonal states. Aerts' (1981, 1982) defines the following ortho- 
gonality relation 3_ on the set of  states Z of S: Two states p and q of  an 
entity S are orthogonal,  and we denote p3_q, iff they are "eigenstates" of  an 
experiment e with different "eigenoutcomes." This orthogonality relation is 
a symmetric relation which is reflexive: (3.8) if p• then q3_p; (3.9) there 
is no state p orthogonal to itself. 

The orthogonal states of  our example are p,, and P-u for every point u. 

6. Orthogonal properties. The orthogonality relation on the states of  
the entity defines in a natural way an orthogonality relation on the properties 
of  the entity: Two properties a and b are orthogonal, and we denote aLb, 
iff every state p that makes a actual is orthogonal to every state q that makes 
b actual. This orthogonality relation has the following properties: (3.10) if 
aLb, then bia;  (3.11) if aKb and c<a and d<b, then c• (3.12) if aKb, 
then a A b = 0. 

The orthogonal properties of  our example are a,  and a_, for every 
point u. 

3.2. The Non-Boolean Character of the Lattice of Properties of Our 
Mechanistic Macroscopic Example 

Let us show the non-Boolean nature of  this lattice, by considering two 
different points u and v of  the sphere, such that - u  is also different from v. 
We have au v a-u = I ;  hence 

(a.v a_u) Aa~,=I /~a,,=a~, (1) 

We also have a. A av = a - .  A a~ = 0 ; hence 

(a~Aav) v(a_uAa~)=OvO=O (2) 

3.3. Construction of the Lattice of Properties by Means of the 
Orthogonality Relation 

It would be very interesting to be able to construct indirectly from the 
graph of  the dynamics of  measurements a lattice which is isomorphic to the 
lattice of  properties of  the entity. This problem has been considered in Grib 
and Zapatrin (1990), by using an orthogonality relation on the set of  states 
of  the entity. Of  course we have to make sure that the lattice that we get by 
this mathematical  construction is indeed isomorphic with the original lattice 
of  properties, if we want to use it for drawing physical conclusions about  
the nature of  the entity (classical or nonclassical or other types of  physical 
conclusions). Let us analyze how this can be done. 
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1. The Caftan representation. Every property a of the lattice of proper- 
ties can be related to the collection of states ~(a) that make this property 
actual. This relation induces a map/~ : 5e --+ ~ ( 2 )  that can easily be shown 
to be an injective lattice morphism (Aerts, 1981 ; Piron, 1990). The property 
I is mapped onto Z, and the property 0 onto the element ~ .  Hence if we 
consider p ( ~ )  which is included in ~(Z)  (the power set of  the set of states 
I;), then it is isomorphic to ~ (/1 is an isomorphism onto its image). From 
this result it follows that we can concentrate on an attempt to construct this 
lattice p (L~) as the collection of subsets of I]. We will do this by using the 
orthogonality relation that naturally exists on the set of states. Indeed, 
without considering the directly constructed lattice of properties of  the entity 
S, the orthogonality relation • on the set t] of states of the entity S gives 
us a way to construct a complete lattice. Let us explain this construction. 

2. The construction of a complete lattice by means of the orthogonality 
relation on the set of  states. Grib and Zapatrin (1990) emphasized that 
sometimes even in macroscopic situations one should use "negative" logic 
when only a negative answer on some question can give exact information 
about the state of  the entity. This can be done due to the orthogonality 
relation on the set of states. So properties are defined by "double negation," 
or in the mathematical sense by the biorthogonals of  sets of states. Let us 
therefore introduce the following definitions: For a subset A of Z, A l =  
{pip ,Z ,  and pLq for all q~A} is the orthogonal of  this subset. We will call 
A •177 the biorthogonal of the subset A. As follows from the theorem below, 
this biorthogonal has the properties of a closure. Therefore we also denote 
it by cl(A), and call a subset of Z "closed" iff cl(A)=A. From Birkhoff 
(1967) it follows that we have the following properties for this biorthogonal 
relation: (3.13) i fA ~_B, then Bat_A• (3.14) A ~_cl(A); (3.15) A 1 =A•177 
(3.16) if A _B ,  then cl (A) c_ cl (B) ; (3.17) cl (cl (A)) = cl (A). 

From these properties one can easily prove the following theorem. 

Theorem. If we have an entity S with a set of states lg and an orthogon- 
ality relation L on Y~, then the collection of closed subsets of  the set of  all 
states Z, denoted by L, forms a complete lattice, with partial order relation 
the set-theoretic inclusion, infimum the set-theoretic intersection. The supre- 
mum of a collection of  elements is the smallest closed subset that contains 
all these elements. 

This method of  constructing the lattice leads to an isomorphic lattice 
of properties if certain axioms are satisfied (Aerts, 1981 ; Piron, 1990, 1.7.4). 

3.4. Construction of the Lattice of Closed Subsets for Our Example 

Let us make the proposed construction for our example. We have Z = 
{pulu is an arbitrary point of the sphere}. We have mentioned already 
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the orthogonality relation on Y~, namely p~• Then p~• 
which shows that {p,} is an element of L for any point u of the sphere. 
On the other hand, for example, for u different from v we have 
{p,,pv}tl=O• since there are no states orthogonal to p~ and pv. The 
same can be seen for all the other elements of ~(Y~). This shows that this 
way of constructing the lattice gives us L = {0, {pu}, Z}, which is a lattice 
isomorphic to ~ .  From the analysis that we made for the lattice A ~ we see 
that this lattice also is non-Boolean. 

4. CONCLUSION 

We have presented a macroscopic mechanistic entity that gives rise to 
a non-Boolean lattice of properties that can easily be seen to be isomorphic 
to the lattice of properties of the spin of a spin-t/2 quantum entity. This 
coincides with the result found in Aerts (1985, 1986, 1987), where it is shown 
that also the probability model of the mechanistic macroscopic entity is 
isomorphic to the probability model of the spin of a spin-l/2 quantum 
entity. For the example that we have considered here, the two methods of 
constructing the lattice of properties of the macroscopic mechanistic entity, 
the direct method and the mathematical method using the orthogonality 
relation on the set of states, lead to lattices that are isomorphic. It can easily 
be shown that in the case of a quantum entity described in a complex Hilbert 
space, these two methods will also lead to lattices that are isomorphic. Indeed 
both methods deliver the well-known lattice of all closed subspaces of the 
Hilbert space. However, for a general experiment situation, the two methods 
may not necessarily lead to the same complete lattice of properties. The fact 
that both methods lead to the same lattice of properties is related to the 
existence of an orthocomplementation on this lattice of properties. In a 
following paper we will analyze why this is so, and the physical meaning of 
the fact that for quantum entities both methods lead to the "good" lattice 
of properties. We shall also investigate the lattice of "operational proposi- 
tions" as defined in Randall and Foulis (1983). 
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